The ECG in Prehospital Emergency Care
William Brady — To my wife, King Brady, my partner and a truly amazing person; to my children, Lauren, Anne, Chip, and Katherine, my inspiration; and to my mother, Joann Brady, for all that she has done (and continues to do) for me.

Korin Hudson — I would like to thank my husband for his unwavering support and patience; my parents for inspiring a career in academics; and my mentors and colleagues who demonstrate excellence in clinical medicine and patient care every day

Robin Naples — To my parents for raising me, my sister for pushing me, my husband for understanding me, and my kids for being my everything.

Amita Sudhir — Thank you to my husband, Aaron, my children, Anisha and Anand, and my parents, Romila and Sudhir for their support. Thank you also to Bill Brady for his educating me about ECGs during residency, and for his continued mentorship ever since.

Steven Mitchell — Thank you to my best friend and wife, Kara, for her love and support in this process.

Jeffrey Ferguson — To my wife, Lauren, my parents, friends, and mentors for their years support and education: Thank you.

Robert Reiser — For my wife Bernie, my constant support and inspiration. Thank you.
Contents

List of Contributors, ix
Foreword, xi
Preface, xiii

Section 1 | The ECG in Prehospital Patient Care, 1

1 Clinical applications of the electrocardiogram (ECG). 3
Robert C. Schutt, William J. Brady, and Steven H. Mitchell

2 Clinical impact of the electrocardiogram (ECG). 7
Robert C. Schutt, William J. Brady, and Steven H. Mitchell

3 Interpretation of the electrocardiogram – single-, multi-, and 12-lead analysis. 12
Robert C. Reiser, Robert C. Schutt, and William J. Brady

4 Variants of the normal, lead misplacement, and electrocardiographic artifact encountered in clinical practice. 17
Robert C. Reiser, Robert C. Schutt, and William J. Brady

Section 2 | Cardiac Rhythms and Cardiac Dysrhythmias, 23

5 Cardiac rhythms with normal rates. 25
Korin B. Hudson and William J. Brady

6 Narrow QRS complex tachycardia. 29
Courtney B. Saunders and Jeffrey D. Ferguson

7 Wide QRS complex tachycardia. 37
Michael Levy and Francis X. Nolan Jr

8 Bradycardia. 44
Korin B. Hudson, J. Aidan Boswick, and William J. Brady

9 Atrioventricular conduction block. 50
Steven H. Mitchell, Korin B. Hudson, and William J. Brady

10 Intraventricular conduction block: bundle branch block and other conduction abnormalities. 54
Steven H. Mitchell, Richard B. Utarnachitt and William J. Brady

11 Atrial and ventricular ectopic beats. 62
Jeffrey D. Ferguson, Michael Levy, J. Aidan Boswick, and William J. Brady

Section 3 | Acute Coronary Syndrome and the 12-Lead ECG, 67

12 Ischemic heart disease: anatomic and physiologic considerations. 69
Peter Pollak, Peter Monteleone, Kelly Williamson, David Carlberg, and William J. Brady

13 Historical development of the prehospital electrocardiogram (ECG). 76
Erik Iszkula, David Carlberg, and William J. Brady

14 Electrocardiographic findings in acute coronary syndrome. 79
Peter Monteleone, Peter Pollak, David Carlberg, and William J. Brady

Section 4 | Special Populations, High-Risk Presentation Scenarios, and Advanced Electrocardiographic Techniques, 95

15 The electrocardiogram in the pediatric patient. 97
Robert Rutherford, Robin Naples, and William J. Brady

16 The electrocardiogram in the poisoned patient. 104
Steven H. Mitchell, Christopher P. Holstege, and William J. Brady

17 The electrocardiogram in hyperkalemia. 112
Steven H. Mitchell and William J. Brady

18 Life-threatening electrocardiographic patterns. 117
Steven H. Mitchell, Richard B. Utarnachitt, and William J. Brady

19 The electrocardiogram in patients with implanted devices. 122
Amita Sudhir and William J. Brady

20 Electrocardiographic tools in prehospital care. 127
Robin Naples, Alvin Wang, and William J. Brady
<table>
<thead>
<tr>
<th>Section 5</th>
<th>Electrocardiographic Differential Diagnosis of Common ECG Presentations, 145</th>
</tr>
</thead>
</table>

21 Wolff–Parkinson–White syndrome, 134
William J. Brady

22 Cardiac arrest rhythms, 138
Amita Sudhir and William J. Brady

23 Electrocardiographic differential diagnosis of narrow complex tachycardia, 147
Megan Starling and William J. Brady

24 Electrocardiographic differential diagnosis of wide complex tachycardia, 152
Amita Sudhir and William J. Brady

25 Electrocardiographic differential diagnosis of bradyarrhythmia, 161
Megan Starling and William J. Brady

26 Electrocardiographic differential diagnosis of ST segment elevation, 165
Megan Starling and William J. Brady

27 Electrocardiographic differential diagnosis of ST segment depression, 176
Amita Sudhir and William J. Brady

28 Electrocardiographic differential diagnosis of T wave abnormalities: the prominent T wave and T wave inversions, 183
Amita Sudhir and William J. Brady

Index, 195
List of Contributors

Editors

William J. Brady, MD, FACEP, FAAEM
Professor of Emergency Medicine and Medicine, Chair, Resuscitation Committee, Medical Director, Emergency Preparedness and Response, University of Virginia School of Medicine; Operational Medical Director, Charlottesville-Albemarle Rescue Squad and Albemarle County Fire Rescue, Charlottesville, USA

Korin B. Hudson, MD, FACEP, NREMT-P
Assistant Professor, Department of Emergency Medicine, Medical Director, Georgetown Emergency Response Medical Service, Georgetown University Hospital, Washington, USA

Robin Naples, MD, FACEP
Assistant Professor, Temple University School of Medicine, Philadelphia, USA

Amita Sudhir, MD, FACEP
Assistant Professor of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, USA

Steven H. Mitchell, MD, NREMT-P, FACEP
Assistant Professor, Associate Medical Director of Emergency Services, Harborview Medical Center, University of Washington School of Medicine, Seattle, USA

Jeffrey D. Ferguson, MD, NREMT-P, FACEP
Assistant Professor of Emergency Medicine, Brody School of Medicine, Medical Director, EastCare Critical Care Transport, Assistant Medical Director, Pitt County Emergency Services, East Carolina University, Greenville, USA

Robert C. Reiser, MD, FACEP
Associate Professor of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, USA

Christopher Kroboth, EMT-P
Firefighter and Paramedic, Fairfax County Fire Rescue, Fairfax, USA

Stewart Lowson, MD
Associate Professor of Anesthesiology and Surgery Director, Critical Care Anesthesia Director, Critical Care Fellowship, University of Virginia School of Medicine, Charlottesville, USA

Amal Mattu, MD
Professor and Vice Chair of Emergency Medicine, University of Maryland School of Medicine, Baltimore, USA

Mark Sochor, MD
Associate Professor of Emergency Medicine, University of Virginia School of Medicine; Associate Professor of Mechanical Engineering, University of Virginia Engineering School, Charlottesville, USA

Benjamin Sojka, EMT-P
Assistant Chief, Charlottesville-Albemarle Rescue Squad, Charlottesville, USA

Sara Sutherland, MD
Assistant Professor of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, USA

Authors

J. Aidan Boswick, BA, EMT-B
Simulation Program Manager, Catholic Health Services Inc., Melville, USA

David Carlberg, MD
Chief Resident, Department of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, USA

Christopher P. Holstege, MD
Associate Professor of Emergency Medicine and Pediatrics, Director, Division of Medical Toxicology, University of Virginia School of Medicine, Charlottesville, USA

Erik Iszkula, MD
Senior Resident, Department of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, USA

Michael Levy, MD, FACEP, FACP
Medical Director, Anchorage Fire Department, Anchorage, USA

Advisory Editors

Kostas Alibertis, CC EMT-P
Instructor and Advanced Life Support Training Coordinator, Emergency Preparedness and Response, University of Virginia Medical Center, Charlottesville, USA; Chief, Western Albemarle Rescue Squad, Crozet, USA

James Brady, EMT-P
Captain, Training Division, Albemarle County Fire Rescue, Charlottesville, USA
List of Contributors

Peter Monteleone, MD
Clinical Instructor and Chief Resident, Department of Medicine, University of Virginia School of Medicine, Charlottesville, USA

Francis X. Nolan Jr, BS, MICP
Chief Medical Officer, Anchorage Fire Department, Anchorage, USA

Peter Pollak, MD
Senior Fellow, Cardiovascular Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, USA

Robert Rutherford, MD
Attending Physician, Swedish Medical Center-Edmonds Campus, Edmonds, USA

Courtney B. Saunders, MD
Fellow in the Adult Cardiovascular Disease, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA

Robert C. Schutt, MD
Clinical Instructor, Department of Medicine, University of Virginia School of Medicine, Charlottesville, USA

Megan Starling, MD
Assistant Professor of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, USA; Attending Physician, Culpeper Memorial Hospital, Culpeper, USA

Richard B. Utarnachitt, MD, MS
Assistant Professor, Associate Clerkship Director, Medical Director, Airlift Northwest, Harborview Medical Center, University of Washington School of Medicine, Seattle, USA

Alvin Wang, DO, NREMT-P
Assistant Professor, Associate Medical Director, Division of EMS, Temple University School of Medicine, Philadelphia, USA

Kelly Williamson, MD
Chief Resident, Department of Emergency Medicine, Northwestern University School of Medicine, Chicago, USA
Foreword

The Prehospital ECG: It’s not just about STEMIs...

Single lead or three lead cardiac monitoring was the sole means for EMS personnel to assess cardiac rhythm in the prehospital setting for many years. Resourceful EMS providers would use all three channels to verify rhythm, check for axis abnormalities and conduction disturbances, and even attempt to identify ST-T wave abnormalities in patients at risk for acute coronary syndrome. However, for most of EMS, the primary use of cardiac monitoring was to monitor the rhythm in the stable patient, or to determine which ACLS algorithm should be followed incases of cardiopulmonary arrest.

With the advent of fibrinolysis, EMS personnel and ED staff began to recognize the importance of early identification of STEMI patients as a means to reduce the “door-to-drug” time. When patients arrived by EMS with a diagnostic ECG having already been performed, patients received fibrinolysis much more quickly than if an ECG had not been done, or if the patient had arrived by private vehicle.

Fibrinolysis required preparation of the drug and patient screening for contraindications, but was otherwise less resource intense than PCI, which became widely used in the mid to latter 1990s. Like fibrinolysis, PCI is time critical, with “door to balloon” times serving as one of the crucial process metrics. Assembling a team for PCI consumed significant resources, including opening of a catheterization laboratory and the presence of the interventional cardiologist and other personnel who could perform the PCI. Mobilizing these resources during nights and weekends had the potential to engender significant time delays. STEMI systems began to mobilize the catheterization laboratory team based solely on the prehospital ECG interpretation. Many of these systems would rely on paramedic interpretation without a physician’s interpretation of the ECG, due to the excellent interpretative skills developed by many EMS providers. The ability to perform 12-lead ECGs in the field has become a required skill in most EMS systems, and is now considered standard for STEMI systems to rely on EMS ECG interpretation to determine not only the destination hospital but also to activate the catheterization laboratory.

As paramedics have become skilled at recognition of STEMI, their interpretation skills in other clinical syndromes have developed. The prehospital ECG is not only administered to patients with suspected ACS, but is also used to better define rate, rhythm, or axis abnormalities first suspected on the single lead cardiac monitor. The 12-lead ECG is better able to define varying degrees of heart block as well as other conduction disturbances. Electrolyte abnormalities can be readily identified and dysrhythmias can be better recognized, thus allowing prehospital providers to tailor treatment to the underlying disorder.

The purpose of this text is to advance the interpretation skills of prehospital providers so that the ECG can be used as a diagnostic instrument for more than just the STEMI. In the same way that prehospital ECGs has reduced the “door-to-drug” and “door-to-balloon” times for STEMI, we are now in the era when the ECG can be used to speed the time to treatment of premalignant dysrhythmias or life-threatening electrolyte abnormalities. Readers of this book will benefit from the expertise of the authors, who have devoted a significant portion of their careers to teaching others the finer points of ECG interpretation. The diagnostic utility of the 12-lead ECG is vast, and after completing this book, readers will come to understand that the prehospital ECG is not only used to diagnose STEMI, but can be used to identify many other clinical condition, which if left untreated, would seriously compromise the health of the patient.

Robert E. O’Connor, MD, MPH

Dr. O’Connor is professor and chair of Emergency Medicine at the University of Virginia in Charlottesville. He is a past President of the National Association of EMS Physicians, a past Chair of the Emergency Cardiac Care Committee for the American Heart Association, and is a current board member of the American College of Emergency Physicians.
Electrocardiographic monitoring is one of the most widely applied diagnostic tests in clinical medicine today; its first application to the patient occurs in the prehospital setting and its use continues on into the hospital. The electrocardiogram, whether in monitor mode using single or multichannel rhythm monitoring or in diagnostic mode using the 12-lead ECG, is an amazing tool; it assists in establishing a diagnosis, ruling-out various ailments, guiding the diagnostic and management strategies in the evaluation, providing indication for certain therapies, offering risk assessment, and assessing end-organ impact of a syndrome. As noted in this impressive list of applications, it provides significant insight regarding the patient’s condition in a range of presentations, whether it be the chest pain patient with ST segment elevation myocardial infarction (STEMI), the patient in cardiac arrest with ventricular tachycardia, the poisoned patient with bradycardia, or the renal failure patient with rhythm and morphologic findings consistent with hyperkalemia, among many, many others... This extremely useful tool is noninvasive, portable, inexpensive, quickly obtained, and easily performed. Yet, its interpretation is not as easily performed and, in fact, requires considerable skill and experience as well as an awareness of its use in the appropriate clinical settings and limitations of patient data supplied.

This textbook has been prepared to assist the prehospital provider with the interpretation of the electrocardiogram and a solid understanding of its use across the range of presentations and applications. This textbook is arranged into five sections. Section one is a brief introduction and review of the ECG in the clinical setting. Section two focuses on the ECG and rhythm diagnosis, considering the electrocardiographic findings from an in-depth differential diagnostic perspective – in other words, rhythms with normal rates as well as bradycardia and tachycardia, allowing for the QRS complex width and regularity. Section three reviews the 12-lead ECG in patients suspected of acute coronary syndrome, including ST segment elevation myocardial infarction. Section four discusses the range of special presentations, patient populations, and uses of the electrocardiogram. Section five is a listing of various electrocardiographic findings, again from the differential diagnostic perspective; in this section, various rhythm and morphologic presentations are discussed, such as the narrow and wide complex tachycardias and ST segment elevation syndromes.

This textbook addresses the use of the ECG in its many forms by the prehospital provider, whether 911 ground EMS response, aeromedical transport, or interfacility critical care transfer. The novice electrocardiographer can use this text as his or her primary ECG reference; additionally, the experienced interpreter can use this textbook to expand his or her knowledge base. This work stresses the value of the ECG in the range of clinical situations encountered daily by prehospital providers – it illustrates the appropriate applications of the electrocardiogram in acute and critical care EMS settings.

Most importantly, this textbook is written by clinicians for clinicians, with an emphasis on the reality of the prehospital setting. I and my coeditors, advisory editors, and authors have enjoyed its creation – we hope that you the prehospital clinician will not only enjoy its content but also find it of value in the care of your patients. We thank you for what you do every day.

William J. Brady, MD
Charlottesville, USA
July 2012
Section 1 | The ECG in Prehospital Patient Care
Chapter 1 | Clinical applications of the electrocardiogram (ECG)

Robert C. Schutt1, William J. Brady2, and Steven H. Mitchell3

1Department of Medicine, University of Virginia School of Medicine, Charlottesville, USA
2Departments of Emergency Medicine and Medicine, University of Virginia School of Medicine, Charlottesville, USA
3Emergency Services, Harborview Medical Center, University of Washington School of Medicine, Seattle, USA

The electrocardiogram (ECG) has become a mainstay of medical care since Einthoven first introduced the concept of electrical imaging of the heart in 1903. He named the five electrical deflections of an “electrical heart beat” with the now well-known descriptors – P, Q, R, S, and T (Figure 1.1). Accurate interpretation of the ECG has become a necessary skill for every clinician who cares for acutely ill patients. The ECG is a non-invasive, inexpensive, easily performed test that allows a clinician to view the electrical activity in the heart. The ECG provides information not only about a patient’s heart rhythm, but also about both cardiac (e.g., acute coronary syndrome [ACS] or myopericarditis) and non-cardiac conditions (e.g., electrolyte disorders, toxic ingestions, and pulmonary embolism).

Electrocardiogram evaluation of rhythm disturbances

The rapid and accurate detection of ventricular fibrillation leading to sudden cardiac death has led to the development of prehospital emergency medical service (EMS) systems worldwide since the late 1960s. The use of ECG monitoring has grown from this early important step to become a mainstay of patient evaluation, not only for cardiac arrest but also for many other conditions. The ECG is the primary tool for evaluating the underlying rhythm of the heart. The ability to evaluate the heart rhythm is critical as cardiac dysrhythmias often are symptomatic and require immediate treatment. However, even if the dysrhythmia is not symptomatic, treatment may still be required to prevent future complications. Atrial fibrillation is a good example of a cardiac dysrhythmia easily identified on ECG, where symptoms may be completely absent or may be severe requiring immediate intervention. Depending on the rate (either fast or slow), the patient’s symptoms may range from a benign fluttering in the chest to more serious symptoms of fatigue, chest pain, or syncope. Figure 1.2 is an example of atrial fibrillation with rapid ventricular response. A patient who experiences heart block may be symptom free or at risk for syncope or cardiac arrest with a high-degree atrioventricular (AV) block, as seen in Figure 1.3. Even when a patient is stable and without active symptoms, the ECG may provide clues that a patient is at risk for a potentially malignant rhythm. The patient depicted in Figure 1.4 is an example of long QT syndrome complicated by malignant ventricular dysrhythmia. The recognition of a prolonged QT interval is critical as patients with this electrocardiographic finding are at higher risk for dysrhythmia and sudden cardiac death (Figure 1.4).

One of the most important parts of prehospital medicine is the recognition and treatment of life-threatening dysrhythmias. For prehospital rhythm interpretation, the use of the ECG in a single- or multilead analysis mode is the most...
appropriate. For strict rhythm only analysis, the 12-lead ECG offers little additional information.

Electrocardiographic evaluation in the setting of acute coronary syndrome

The ECG is also an important tool in evaluating the patient with a suspected ACS. The 12-lead ECG can not only provide important information regarding the ACS diagnosis but also guides therapy and predicts risk, and can suggest alternative diagnoses. The use of the 12-lead ECG in “diagnostic mode” is the most appropriate electrocardiographic tool; the use of single-lead rhythm monitoring is not of value with regard to ACS detection – yet single-lead monitoring is of extreme importance in the detection of cardiac rhythms, which can complicate ACS events (Figure 1.5).

In patients with ST segment elevation myocardial infarction (STEMI), the ECG not only provides the specific
diagnosis but is also the primary means for determining a patient’s need for emergent reperfusion of the obstructed coronary artery; refer to Figure 1.6, which demonstrates an ECG of a patient with an inferior wall STEMI. It has been shown in numerous studies that the prehospital 12-lead ECG markedly reduces the time to hospital-based reperfusion (fibrinolysis and percutaneous coronary intervention) in patients with STEMI. In non-ST segment elevation myocardial infarction (NSTEMI) the ECG is also valuable. The ECG can display evidence of ongoing cardiac injury with T wave inversion or ST segment depression. The ECG can also help localize the obstructed coronary artery; for example, Wellens’ Syndrome has a characteristic ECG pattern with changes to the T wave in the precordial leads, predominantly leads V2–V4, which can indicate a high-degree obstruction of the proximal left anterior descending coronary artery.

Electrocardiographic evaluation in the setting of non–acute coronary syndrome pathology

The ECG is also a useful tool in the evaluation of non-coronary artery pathology that manifests with changes to the ECG. Refer to Table 1.1 for a list of selected diseases not related to coronary obstruction that may have significant
Table 1.1 Selected examples of non-coronary pathology evaluated by ECG

<table>
<thead>
<tr>
<th>Condition</th>
<th>ECG Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericarditis</td>
<td>• Diffuse non-anatomical ST segment elevation without reciprocal changes</td>
</tr>
<tr>
<td></td>
<td>• Diffuse PR segment depression</td>
</tr>
<tr>
<td></td>
<td>• Isolated ST segment depression and PR elevation in aVR</td>
</tr>
<tr>
<td>Pericardial tamponade</td>
<td>• Electrical alternans</td>
</tr>
<tr>
<td></td>
<td>• Low QRS complex voltage</td>
</tr>
<tr>
<td></td>
<td>• Diffuse PR segment depression</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>• Osborn “J” waves</td>
</tr>
<tr>
<td></td>
<td>• Bradycardias and AV blocks</td>
</tr>
<tr>
<td></td>
<td>• Prolongation/widening of PR interval, QRS complex, and QT interval</td>
</tr>
<tr>
<td></td>
<td>• Atrial fibrillation with slow ventricular response</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>• Diffuse non-anatomical peaked T waves</td>
</tr>
<tr>
<td></td>
<td>• Widening of PR interval and QRS complex widths</td>
</tr>
<tr>
<td>CNS events</td>
<td>• Diffuse, deep T wave inversions</td>
</tr>
<tr>
<td></td>
<td>• Minor ST segment elevations in leads with T wave inversions</td>
</tr>
<tr>
<td>Overdose and intoxication</td>
<td>• Rhythm disturbances</td>
</tr>
<tr>
<td></td>
<td>• Widened QRS complex</td>
</tr>
<tr>
<td></td>
<td>• Prolonged QT interval</td>
</tr>
</tbody>
</table>

abnormalities evident on the ECG. Pericarditis (inflammation of the pericardial sac) leads to a diffuse pattern of PR segment depression and ST segment elevation that can be differentiated from STEMI as the elevation is present in a pattern not anatomically related to a coronary artery distribution. At the same time, the diagnosis of pericarditis can be difficult, and the patient may present with chest pain and ST segment elevation, potentially leading to the incorrect diagnosis of STEMI. Pericardial effusion with ultimate cardiac tamponade is caused by fluid in the pericardium that can accumulate owing to a variety of causes including recent viral infection or cancer. On the ECG, this condition leads to sinus tachycardia and low QRS complex voltage. Electrical alternans is also seen in this setting and is characterized by beat-to-beat alterations in the QRS complex size, reflecting the swinging motion of the heart in the pericardial fluid.

There are also a host of conditions that are not primarily related to the heart where the ECG may provide a clue to diagnosis. Pulmonary embolism can present with the classic “S1Q3T3” on the ECG (Figure 1.7). Osborn waves are positive deflections occurring at the junction between the QRS complex and the ST segment that are typically observed in patients suffering from hypothermia with a temperature of less than 32°F. Several electrolyte disturbances exhibit characteristic changes to the ECG. Hyperkalemia first results in peaked T waves most apparent in the precordial leads. If the condition is untreated, however, the ECG may progress to widening of the QRS complex and the eventual fusing of the QRS complex and the T wave, resulting in a sine wave configuration and ultimately cardiac arrest. Central nervous system (CNS) events such as intraparenchymal hemorrhage, ischemic stroke, and mass lesion may also present with changes in the ECG, largely involving the T wave with inversion and prolongation of the QT interval.
Chapter 2 | Clinical impact of the electrocardiogram (ECG)

Robert C. Schutt¹, William J. Brady², and Steven H. Mitchell³

¹Department of Medicine, University of Virginia School of Medicine, Charlottesville, USA
²Departments of Emergency Medicine and Medicine, University of Virginia School of Medicine, Charlottesville, USA
³Emergency Services, Harborview Medical Center, University of Washington School of Medicine, Seattle, USA

The impact of the electrocardiogram (ECG) on clinical care is wide ranging and significant. The ECG is a primary tool for evaluating the unstable patient and a useful tool in the assessment of the stable patient. The ECG aids in clinical decision making for patients experiencing primary cardiac pathology. This includes conduction disturbances, acute coronary syndrome (ACS), and also such non-cardiac pathology as pulmonary embolism (PE), metabolic disarray, and poisoning or overdose. The use of the ECG is widespread and requires every clinician to work toward competence in the efficient and accurate use and evaluation of the ECG.

Management of the patient with dysrhythmia

From its inception, rudimentary ECGs have been used to diagnose and treat rhythm disturbances. There are now well-established treatment algorithms for both prehospital and hospital treatment of life-threatening cardiac dysrhythmias, and the ECG findings are paramount in these algorithms. The emergent diagnosis and management of life-threatening dysrhythmias is all based on the interpretation of the single-lead ECG (also called a rhythm strip).

A significant impact of the ECG and an area of continued research is in the treatment of sudden cardiac death. Symptomatic dysrhythmias are encountered frequently in prehospital patients. Sudden cardiac death is a commonly encountered extreme example of symptomatic dysrhythmia in which the ECG plays a pivotal role in assessment and management. Non-cardiac arrest rhythms are also quite common in the prehospital setting. These rhythm possibilities range from bradycardia to tachycardia, with and without conduction block. Clearly, the single-lead ECG enables the clinician to diagnose the rhythm and initiate the most appropriate care based on the ECG information as well as the patient’s clinical situation.

Management of the patient with acute coronary syndrome

Beyond the recognition and treatment of cardiac rhythm disturbances, the ECG has impacted the care of patients with ACS with both the single- and the 12-lead ECG. The 12-lead ECG (as opposed to laboratory evaluation with a cardiac enzyme assay such as troponin) is the primary tool for identifying patients with ST segment elevation myocardial infarction (STEMI). In STEMI, the ECG rapidly identifies patients who are in emergent need of revascularization. The ECG is used in both the prehospital and hospital environments to detect STEMI and has been shown to favorably impact the time to revascularization. Also, when used in the prehospital setting, the ECG may detect ischemic changes that resolve before arrival at the emergency department and provides a valuable snapshot of an ischemic event. The benefits of prehospital ECG are realized with little increase in emergency medical service (EMS) resources or on-scene time. Many EMS systems have the capability to transmit the 12-lead ECG for “real-time” interpretation by a physician. With the advent of cellular and handheld technology, an EMS provider can easily transmit an ECG directly to the handheld device of a cardiologist who can make treatment and reperfusion decisions even before the patient leaves the scene of the emergency.

EMS providers can also recognize STEMI in prehospital patients with chest pain. The interpretation of the 12-lead ECG, however, is a skill that requires advanced training and practice in order to assure proficiency. Inaccurate
interpretation of the ECG has been shown to impact the care of patients with ACS. In particular, clinicians must be particularly aware of ominous changes of the ST segment and the T wave. Inaccurate interpretation of the ECG, including the lack of recognition of ST segment and T wave abnormalities can have grave consequences for the patients and potentially expose them to inappropriate and dangerous therapies. A significant limitation of the 12-lead ECG in the evaluation of the ACS patient is that it has rather poor sensitivity (i.e., often falsely negative) for the diagnosis of myocardial infarction. The ECG initially suggests acute infarction in only 50% of patients ultimately found to have an acute myocardial infarction.

Single-lead ECG monitoring is also of significant importance in the ACS patient – not aimed at the detection of ST segment and T wave abnormalities associated with ACS but rather for the detection of complicating rhythm disturbances, such as sinus bradycardia, complete heart block, and ventricular fibrillation.

Management of non–ACS presentations

The impact of the ECG has been extended beyond the diagnosis and treatment of primary cardiac pathologies. In the patient with chest pain or dyspnea, the ECG can suggest alternative diagnoses to ACS; for instance, the ECG can suggest PE. Historically, the “S1Q3T3 pattern” (S wave in lead I, Q wave in lead III, and T wave inversion in lead III) is classically associated with PE (Figure 2.1). It is important to note that these changes suggest right ventricular “strain” directly, rather than PE. S1-Q3-T3 is typically present only in large PE and the absence cannot be used to exclude the diagnosis.

In the setting of poisoning or overdose, the ECG is used not only as a diagnostic study to rule in the condition but also as an indicator of risk to guide the intensity of therapy. For instance, cardiac sodium channel and potassium efflux blockade will produce worrisome ECG findings, such as widening of the QRS complex and prolongation of the QT interval, respectively. These findings can occur in patients taking prescribed medications as well as in the patient who has overdosed. In the setting of tricyclic antidepressant (TCA) overdose (a potent sodium channel blocking agent), an R wave (positive deflection of the QRS complex) that is 3 mm above the isoelectric line in lead aVR has been shown to be predictive of significant cardiotoxicity including the development of seizures and ventricular arrhythmias (Figure 2.2).

The ECG also impacts the care of patients with underlying metabolic or electrolyte disorders such as hyperkalemia. In hyperkalemia, T waves become peaked as the serum potassium level increases (Figure 2.3). Left untreated, rising serum potassium level leads to changes in the P wave and QRS complex (Figure 2.3). The PR interval will lengthen and the QRS complex progressively widens (Figure 2.3); ultimately, the ECG continues to change, terminating as a sine wave when the P wave (Figures 2.4 and 2.5), the QRS complex, and the T wave fuse, forming a sine wave – this finding is called the sinus venous rhythm of severe hyperkalemia (Figures 2.4 and 2.5). The ECG provides important information to guide therapy (Figure 2.6).
Ambulatory electrocardiogram monitoring

One significant problem for evaluating patients with suspected dysrhythmia is that frequently dysrhythmias are transient. It is not uncommon for a patient to no longer have evidence of a rhythm abnormality on arrival at the EMS or when the patient is evaluated at the emergency department or the physician’s office. It is often exceptionally difficult to determine if symptoms such as chest pain or syncope are related to a cardiac dysrhythmia unless there is electrocardiographic evidence of a rhythm abnormality at the time the patient is symptomatic. With this in mind, it is extremely important that any evidence of a prehospital dysrhythmia or electrocardiographic abnormality be printed and provided to the hospital for review by the receiving clinician. Simply recording and printing an abnormal ECG in certain circumstances may avoid unnecessary, expensive, and potentially invasive diagnostic testing.

To solve the problem of evaluating intermittent dysrhythmias, devices to record both continuous and intermittent ECG readings were developed, which allow the patient to continue with day-to-day activities at home with ECG monitoring available. This technology is referred to as ambulatory ECG monitoring.

Computer interpretation of the electrocardiogram

Significant advances in detecting and managing abnormal ECG findings occurred in conjunction with the development of the microprocessor. As computer algorithms were developed that could reliably detect and identify cardiac dysrhythmias, the ability to treat abnormal rhythms was
expanded significantly. One significant advance is that a layperson with little to no medical training can now provide definitive treatment for patients in cardiac arrest with ventricular tachycardia (VT) or ventricular fibrillation using an automated external defibrillator (commonly referred to as an AED). Locations with widespread AED availability have seen a significant survival benefit associated with the use of this device.

With advancement in technology, artificial cardiac pacemakers and implantable cardioverter-defibrillator (ICDs) were developed that could autonomously identify and treat a wide variety of dysrhythmias. Although the initial cardiac pacemakers did not detect or interpret the ECG rhythm, devices now interpret and respond to ECG changes. Pacemakers evolved from being a single-chamber device that only produced a repeated asynchronous discharge from the right ventricle to devices with leads in three chambers that can monitor and respond to the sensed cardiac rhythm, equipped with adjustable timing to synchronize ventricular contraction and mechanisms to sense metabolic needs and increase heart rate with activity. Pacemakers are used to treat heart rates that are too slow (Figure 2.7). Pacemakers can be used to synchronize ventricular contraction in patients with both heart failure and ventricular conduction delay, which results in improved cardiac function and reduced mortality in select patient groups.

An ICD is a device similar to a pacemaker that has the ability to cardiovert and defibrillate a patient for VT or ventricular fibrillation (Figure 2.8). Although devices that have a combination of an advanced pacemaker with an ICD exist, the use of the term pacemaker does not imply the presence of an ICD, but all ICDs usually have at least a rudimentary pacemaker function to treat unexpected bradydysrhythmias. One significant feature of an ICD is that it can painlessly terminate VT with antitachycardia pacing (also called ATP), thereby avoiding cardioversion/defibrillation. In ATP, a short burst (e.g., 8 s) of pacing at a rate slightly faster than the underlying VT is delivered by the ICD, which frequently (~75–90% of the time) will terminate the episode of VT without defibrillation. As repeated defibrillations can be traumatic for the patient, typically the cardiologist will program the ICD to deliver a few rounds of ATP before the device delivers a shock. An ICD is most beneficial in patients with heart failure or patients with reduced cardiac function after a myocardial infarction. Although ICDs clearly save lives, significant anxiety is common following repeated defibrillations, and many patients with a poor prognosis would rather not experience repeated painful shocks at the time of their death. In patients experiencing repeated shocks (e.g., a patient in VT storm), it is